Cochlear surgery: the new frontier in otosurgery

Prof. Manuel Manrique

Inner Ear Surgery
Hybrid stimulation: CI + HA in the same ear
Inner ear surgery

- Cochlear implant surgery
- Diagnosis of SNHL:
 - Take samples
- Delivery of drugs and cells
 - Neurotrophines
 - Antioxidants
 - Stem cells
 - Etc
- Vestibular surgery

Atraumatic cochlear surgery means:
To act surgically on the structures of the membranous labyrinth without damaging its function.
HOW TO PERFORM THIS ATRAUMATIC SURGERY?

Research project milestones

• Study of the target area: Lateral wall of the cochlea

Acta Otolaryngol 2004; 124: 1–7

Morphometry of the Human Cochlear Wall and Implications for Cochlear Surgery*

FRANCISCO JAVIER CERVERA-PAZ¹, FRED H. LINTHICUM², MANUEL J. MANRIQUE³ and NICOLÁS PÉREZ¹
Morphometry of the Human Cochlear Wall and Implications for Cochlear Surgery

FRANCISCO JAVIER CERVERA-PAZ, FRED H. LINTHICUM, MANUEL J. MANRIQUE and NICOLAS PÉREZ

36 temporal bones

Every cochlea have the same size and shape?
Research project milestones

- Drilling to expose the spiral ligament, does it provoke hearing loss?

Efecto acústico inmediato de la fístula coclear en el cobaya

M. S. Boleas-Aguirre, N. Pérez, J. Cervera-Paz, M. Manrique
Departamento de Otorrinolaringología, Clínica Universitaria-Facultad de Medicina. Universidad de Navarra.

• Drilling to expose the spiral ligament, does it provoke hearing loss?

Study in guinea’s pigs
Efecto acústico inmediato de la fistula coclear en el cobaya

M. S. Boleas-Aguirre, N. Pérez, J. Cerveno-Paz, M. Marriquie
Departamento de Otorrinolaringología, Clínica Universitaria-Facultad de Medicina, Universidad de Navarra

15 animals: 30 ears. Place cochleostomy:
• 10 scala timpany
• 10 scala vestibuly
• 10 spiral ligament

Pre DPOAE

Cochleostomy 2° turn

Post DPOAE

DPOAE mean values

Drilling to expose the spiral ligament, does is provoke hearing loss?

Study in Macaca fascicularis
Cochleostomy in Macaca fascicularis

- Animals: 5 Macaca fascicularis
- Surgical procedure: Promontorial cochleostomy with preservation of spiral ligament
- Auditory evaluation: Pre and post OA and ABR(*)
- Follow-up: 23-25 months

Promontorial cochleostomy: Experimental procedure in animal model (Macaca fascicularis)
Cochleostomy: Experimental procedure in Macaca fascicularis (GEP5)

Posterior timpanotomy

Cochleostomy

Auditory Evaluation: OA y PEATC
Cochleostomy in Macaca fascicularis

- **MONKEY** | **FOLLOW-UP** | **RESULTS**
- 8231 GPE2 (*) | 26 months | OA- ABR 30dB
- 8071 GPE3 | 25 months | OA+ ABR 50dB
- 10011 GPE4 | 26 months | OA+ ABR 30dB
- 9043 GPE5 | 25 months | OA+ ABR 30dB
- 12161 GPE6 | 24 months | OA+ ABR 40dB

- No cases of total deafness
- 1 cases of partial hearing loss
- 3 cases of total hearing preservation
- (*) No cochleostomy: Control case

January 2008
Research project milestones

- Development of a micromanipulator to approach to the spiral ligament in the lateral wall of the cochlea

Atraumatic approach to the cochlea with a micromanipulator

MANUEL J. MANRIQUE1, JOAN SAVALL2, FRANCISCO JAVIER CERVERA-PAZ1, JORGE REY1, CAROLINA DER1, MIKEL ECHEVERRIA3 & MIKEL ARES2

1Department of Otorhinolaryngology, Head & Neck Surgery, Clínica Universitaria, University of Navarra, Pamplona and
2CRIT and Brown, University of Navarra, San Sebastian, Spain

Atraumatic approach of the spiral ligament:
- It needs new surgical tools ⇒ Micromanipulator
- Increases level of atraumaticity and reproductibility
Stage ONE: Bone drilling

- Mainly two possible tools were considered for making the groove:
 - Laser beam
 - Drilling

- Possible global solutions for increasing the accuracy of the surgeon:
 - Teleoperation
 - Micromanipulators (manual or motorized)
 - Passive-controlled joint

Teleoperation system

- Precision
- Possibility of force feedback
- Not specific for a concrete task

- Controlled “by wire”
- Too sophisticated
- Training periods
- Expensive
Commercial micromanipulators

- Precision
- Commercial

- Low speed
- Sophisticated
- Expensive

Passive-controlled joint suggested

- Simple
- High Precision
- Surgeon keeps “the control of touch”
- Low cost

- Specific for this application
- Complex design of the joint
University of Navarre Micromanipulator

Compliant mechanism

Positioning mechanism

Attachment mechanism
University of Navarra Micromanipulator: Control in-depth movements

With the Z mechanism

With the compliant mechanism

University of Navarra Micromanipulator
18 Humans Temporal Bones:
In 15 cases ⇒ Total preservation of the spiral ligament
Endosteal approach with MM (HT1)

Future electrode concepts

Smart intra-cochlear electrodes

- Micro- and nano-structured stimulation contacts
 - Improved neural interfaces
- Transducers
 - Actuating and sensing perilymph flow
- ASIC integration
 - Reduce # of lead wires
 - Increase contact density
- Biocoatings
 - Reduce scar tissue growth
 - Encapsulation
 - Improved mechanical strength
- Sensors
 - Temperature, pH

Next generation of extra-cochlear electrodes

- Modiolus electrodes
- High density ABI electrodes
- Endosteal electrodes
Thank you!